285 research outputs found

    Optimization of large homogeneous air Cherenkov arrays and application to the design of a 1TeV-100TeV gamma-ray observatory

    Full text link
    At the time large air Cherenkov arrays are being discussed for future gamma-ray observatories, we review the relationship between the targeted capabilities and the main design parameters taking into account construction costs. As an example application, we describe a telescope array optimized for observations between 1 TeV and a few 100 TeV and use detailed simulations to estimate its performances in comparison to science objectives.Comment: 23 pages, 16 figures, accepted for publication in Astroparticle Physic

    Attraction-repulsion transition in the interaction of adatoms and vacancies in graphene

    Get PDF
    pre-printThe interaction of two resonant impurities in graphene has been predicted to have a long-range character with weaker repulsion when the two adatoms reside on the same sublattice and stronger attraction when they are on different sublattices. We reveal that this attraction results from a single energy level. This opens up a possibility of controlling the sign of the impurity interaction via the adjustment of the chemical potential. For many randomly distributed impurities (adatoms or vacancies) this may offer a way to achieve a controlled transition from aggregation to dispersion

    Towards micro-arcsecond spatial resolution with Air Cherenkov Telescope arrays as optical intensity interferometers

    Full text link
    In this poster contribution we highlight the equivalence between an Imaging Air Cherenkov Telescope (IACT) array and an Intensity Interferometer for a range of technical requirements. We touch on the differences between a Michelson and an Intensity Interferometer and give a brief overview of the current IACT arrays, their upgrades and next generation concepts (CTA, AGIS, completion 2015). The latter are foreseen to include 30-90 telescopes that will provide 400-4000 different baselines that range in length between 50m and a kilometre. Intensity interferometry with such arrays of telescopes attains 50 micro-arcseconds resolution for a limiting V magnitude of ~8.5. This technique opens the possibility of a wide range of studies, amongst others, probing the stellar surface activity and the dynamic AU scale circumstellar environment of stars in various crucial evolutionary stages. Here we discuss possibilities for using IACT arrays as optical Intensity Interferometers.Comment: Appeared in the proceedings of "The Universe under the Microscope - Astrophysics at High Angular Resolution", Journal of Physics:Conference Series (IOP; http://www.iop.org/EJ/toc/1742-6596/131/1
    • …
    corecore